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We rederive Brinkman’s equations for the flow of slow viscous fluid past a random 
distribution of identical obstacles using the Foldy’s approximation. It is shown 
explicitly that such a derivation is valid for extremely dilute systems. We argue that 
Brinkman’s equation can be used even in systems with lower porosity by proposing 
a model of porous media that has a very large number of scales. 

1. Introduction 
One of the most important equations used to describe flow in porous media is 

Brinkman’s equation. It was suggested by Brinkman (1947) and later it was realized 
by Tam (1969) that the proper way to derive that equation is through the Foldy’s 
(1945) approximation. Brinkman’s equation has become a major tool in the theoretical 
investigation of flow in porous media especially in the analysis of interface conditions 
(Saffman 1971 ; Haber & Mauri 1983) and long-range hydrodynamical interaction 
(Childress 1972; Saffman 1973 ; Kim & Russel 1985). In  view of the many applications 
of this equation, we find it worthwhile to look more carefully at its derivation. Tam 
(1969) referred to the approximation he was using, saying ‘ . . .we will assume that 
it is valid although we cannot prove i t  to be so’. A rigorous proof for the convergence 
of Stokes equation in domains containing random distributions of identical spheres 
to the Brinkman’s equation was given recently (Rubinstein 1986). Such a convergence 
is achieved when the number of obstacles N tends to infinity as their radii tend to 
zero with a rate of O(N-’) .  In fact, this special scaling appears implicitly in Tam’s 
calculations, though is is not transparent through the formulation he used. According 
to the scaling we impose, it turns out that Brinkman’s equation is the correct effective 
equation for very dilute systems, since 9 (the volume fraction occupied by the 
obstacles) behaves like NPa.  On the other hand, drag predictions based on Brinkman’s 
equation are done for systems which are not so extremely dilute. 

The aim of this paper is twofold: first we show explicitly why the special scaling 
mentioned above is so crucial for the Foldy’s approximation; and then we propose 
a model for porous media which has a large number of microscopic scales, and for 
which the modified Foldy’s approximation yields Brinkman’s equation when 9 is 
small but still much larger than 0(W2). 

In $2 we derive the effetive equation using a formulation that was introduced by 
Papanicolaou (1985) for diffusion problems, and in $3 we analyse the many-scales 
model. Our methods are (mathematically speaking) formal. Rigorous proof are quite 
complicated and will be given elsewhere. 
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2. Foldy's approximation for identical spheres 
We consider the flow of slow viscous fluid past a distribution of N identical 

spherical obstacles. The spheres are centred a t  dv;}, j = I ,  2, .. ., N ,  and have radius a 
(a < 1) .  They are assumed to remain fixed at CY,.}. The points dv;r} are randomly 
distributed, independent of each other with a density probability function p(x) that 
is taken to be continuous and i t  vanishes outside some finite domain. We scale this 
domain to have volume 1 .  The flow is described by the stokes equations 

(2.1) 1 p A u N  = VpN+f in R 3 - B N ,  

W*uN = 0 in R 3 - B N ,  

uN = 0 for Ix-y,I = a (j = 1,2,  ..., N ) .  

Here BN is the domain occupied by the spheres, and f is a given body force. 
The fundamental solution (Stokeslet) for the Stokes equation is 

(Happel & Brenner 1965) where the singularity is at  y. 
We can write the solution to (2.1) in terms of Wij as 

The first approximation is the point-sources approximation : we replace W,(x,y) for 
ly-y,l = a by Wij(x,y,), and write 

(Notice that we extended the domain of the first integral to R3, assuming that 
q5 = $7cNa3 is small.) 

The second step is to approximate the surface integrals in (2.4). We assume that 
as N becomes large, uN tends to a smooth vector field u and, furthermore, each sphere 
'feels' in its vicinity (i.e. on a scale which is comparable with its own lengthscale a) 
the following local problem : 

,u Au* = V p N ,  

In the last step we have assumed that v(x) does not change much over distances a. 
Then, the surface integrals can be evaluated using Stokes formula and we obtain 

N 

k-1 
.2" x JR3 Wij(X'Y)&(Y)dY + 6 v a  c Kj(X,Y,)  U,(Yk) .  (2.6) 

Similarly, we can approximate p N  by 
N 

k-1 
qx,Y)&W)dY+6wa x q x ' u k )  U j ( Y k ) ,  (2.7) 
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1 5 - y  
47c Ix-y)3' 

n. = -JI where 

From our assumptions on bj} we know that 

- l N  g(Yk)+jP(Y)g(Y)dY 

k-1 

media 

as N + c o  

381 

for every continuous function gu) .  (In fact, the last statement holds in probability 
1 by the law of large numbers.) So if we want to get a non-trivial limit in (2.6) or 
(2.7) we must choose 

(2.9) a = -  (Y = O(1)) N 
Taking now the limits (i.e. smoothing (2.6) and (2.7) by (2.8)) and identifying those 

limits as v(x) and p ( x )  (the effective velocity and pressure respectively), we get 

V W  = W,(-%Y)4(Y)dY+67cPYj W,(X,Y)V,(Y)dY, (2.10) 

P W  = JR8 qx,Yl&dv)dY+6w j qx,Y)  Vj(Y)P(Y)dY, 

j R 3  R3 

(2.11) 
R3 

which are the integral representation of Brinkman's equation 

(2.12) 

The formal approximation that we employed was proved to converge under very 
general conditions for diffusion problems by Papanicolaou & Varadhan (1980), Ozawa 
(1983) and Figari, Orlandi & Teta (1985) (among others), and for the Stokes equation 
by Rubinstein (1986). As we explained in the introduction, the scaling (2.9) implies 

q5 = +xy3N-', (2.13) 

i.e. we have a very dilute system. It turns out, however, that if one computes the 
drag on a test sphere, which is assumed to be immersed in a fluid governed by an 
effective field equation like (2.12), the results are in good agreement with experiments 
even for q5 x 0.1-0.2 (which is much higher than (2.13) for typical values of N). We 
believe that the reason for it is that in reality the medium does not consist just of 
identical obstacles, nor even of particles of the same size, but rather it is composed 
of obstacles whose dimensions are spread over many lengthscales. This is evidently 
true for packed configurations, but should also hold for more dilute systems. In  the 
next section we propose a model for such media. This is by no means the only possible 
model, though its basic feature (i.e. there are many spheres on each scale, but their 
numb?r decreases with increasing scale) should be common to all such models. 

3. The multiple-scale model 
We stretch now the domain of validity for Brinkman's equation to higher volume 

fractions. We propose the following model: Let 0 < a < 1, 00 > > 1 be fixed 
constants independent of No (the number of spheres.) The spherical obstacles are 
centred at b,} as before. They come in groups where the ith group has N, spheres 
with radius R,, and 

N, = aaN, R, = y@N-' (i = O , l ,  2, ..., k(N)), (3.1) 

13-2 



382 ,I .  Rubinstein 

where N is a large number. (In order to make sense, we take the integer 7. alue of a i N . )  
We are interested in the limit N + c o  and we want Ni(N)+Oo as well. Hence we 
restrict k ( N )  so that 

Nk = akN = Nc for some fixed e > 0. (3.2) 

Finally, we relate a and P by 
P = a - 1 + 8  (8 > 0). 

Let us look at some consequences of the construction : 
(i) The number of spheres No satisfies 

i.e. No = O ( N ) .  
(ii) The volume fraction occupied by the obstacle is 

k 

i -0  
$ = $N-2y3 c = 0 ( N - 2 e - 3 8 )  for N large. 

(iii) If we repeat Foldy's approximation, we find (cf. (2.6), (2.7)) 

(3.3) 

(3.4) 

Taking the limit N +  CQ, using (3.3) and the proposition discussed in the Appendix, 
we arrive a t  the effective equation 

pA~-6xpyA(a ,S)p(x)u  = Vp+J (3.7) 

w - u  = 0, 

1 
A ( a , 6 )  = - 

1-a8' 

4. Remarks 
( i )  By choosing S and B t o  be small (but positive) we can achieve volume fractions 

much higher than O(N-2) .  We note, however, that  taking B small will result in a slow 
rate of convergence. 

(ii) For 6 6 1 ,  the second term on the left-hand side of (3.7) is dominant. This is 
of course the D'arcy limit, where the permeability K is given by 

K = [6xyA(a,6)p(x)]-'. 

(iii) The crucial point in this construction was that C converges while c ai/33i 
diverges. 

(iv) Our results should not be confused with higher-order correction terms which 
must be added to (2.12) when the volume fraction becomes so large that the 
point-sources approximation breaks down and higher multiples must be taken into 
account. 
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Appendix 
Let {rJ} be a collection of independent, identically distributed random variables 

with expectation p and variance u2. Using the notation of $3, we want to estimate 

where b > 0 is arbitrary. From Chebychev’s inequality, this is controlled by 

la2 1 ~o 1 k a281 Ni 
- - g 2  < 

1-0 5-0 . b Ne 1-aZ8 

as N - t  co for any fixed b > 0, and so we can use 

1 K ,8l N1 

N+a, 1-0 Nl. J-1 

lim Z - Z r J = p E 8 .  

(Actually, this limit holds with probability 1 . )  
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